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A fully three-dimensional time-dependent Navier–Stokes model with forced convection is developed to
numerically investigate the heat and flow patterns of the two-roll mill system with two inner rotating
cylinders. Such direct numerical simulations are usually limited by the difficulties from huge computa-
tional cost and complex boundary treatment. For a fast numerical process, we can use the operator-split-
ting scheme with the BTD term to advance the solution in temporal evolution. To implement the
calculation over a Cartesian grid, the hybrid Cartesian/immersed-boundary finite-element method is
employed for spatial discretization. In the authors’ previous study [D.L. Young, C.L. Chiu, C.M. Fan, A
hybrid Cartesian/immersed-boundary finite-element method for simulating heat and flow patterns in a
two-roll mill, Numer. Heat Transfer B 51 (3) (2007) 251–274], we have developed a simplified 2D numer-
ical model to analyze the heat and flow patterns on the cross section of two-roll-mill flow under the
assumption of infinite length in the third (vertical) direction. However, the 2D solutions could not com-
pletely represent the realistic physical phenomena unless a 3D algorithm is developed. In this study we
then paid the particular attention to develop a 3D model to investigate the vertical heat and flow behav-
iors, including 3D features of the vortex structure, periodic oscillation and chaotic instabilities. It is found
that the proposed 3D model is able to cover the 2D features if the assumptions of 2D conditions are
fulfilled.

� 2009 Published by Elsevier Ltd.
1. Introduction

Researchers in all aspects of theoretical, computational and
experimental investigations for decades have focused on flow
transition and hydrodynamic instability in rotating systems since
it is an important subject in fluid mechanics. Among these inves-
tigations, the Taylor–Couette problem is the most well-known
benchmark for understanding the mechanisms of flow instabili-
ties and vertical vortical motions. The vortex structure, the hydro-
dynamic instability and the mass transfer of flows are of
particular interest for fluid mechanists. These phenomena are
usually studied by analytical or experimental methods [1,2]. Re-
cently, with the vast improvement of computer technology, the
3D numerical Navier–Stokes models were developed to provide
the detailed information of the Taylor–Couette flows. Rudman
[3] examined the effect of wavy motion on mixing and particle
transport in the wavy vortex regime of Taylor–Couette flow. Liao
et al. [4] investigated the flow patterns for the states or regimes
of steady circular Couette flow, steady Taylor vortices and the
onset of periodic spiral vortices.
Elsevier Ltd.

.

The flow device of a two-roll mill is another interesting alterna-
tive of rotating system, which has been widely used for studies in
chaotic advection, drop and bubble dynamics [5], etc. Due to the
geometric complexity, the analytical and numerical methods are
usually limited to the assumptions of axisymmetry and even
inertia force free to simplify the analysis. Reyes and Geffroy [6]
provided a closed-form analytical solution for the Stokes flow gen-
erated by a co-rotating two-roll mill. On the other hand, Price et al.
[7] in contrast applied a least-squares approach to calculate the
Stokes flow in the two-roll-mill domain, and compared the numer-
ical results with some experimental data. Hills [8] investigated the
flow field for a two-roll mill using a finite-difference scheme over a
special-arrangement Cartesian grid. However, it is observed that in
Hills’ study the variable spacing must comply satisfactorily with
the circular boundaries. In fact, the capability to handle complex
geometry problems remains a challenging task in the realm of
computational fluid dynamics especially for 3D heat and flow
patterns.

The computational fluid dynamics community recently is par-
ticularly interested in the Cartesian grid-based method, since the
governing equations with complicated geometry could be dis-
cretized by a Cartesian grid that generally does not conform to
the immersed boundaries. It can greatly simplify grid generation
while retaining the efficiency of Cartesian solvers. A major
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Nomenclature

f momentum body force
H height of circular cylinder
h energy body force
P point in Cartesian coordinates
p dimensionless pressure
R dimensionless radius of outer cavity
r dimensionless radius of inner cylinder
Pr Prandtl number
Re Reynolds number
T dimensionless temperature
t dimensionless time
u dimensionless velocity vector

u� intermediate velocity
u, v, w dimensionless velocity components
x, y, z dimensionless coordinates
r del operator
r2 Laplacian
Dt time increment
/i angular velocity of inner cylinder, i = 1, 2

Superscript and subscript
n nth time step
n + 1 (n+1)th time step
b desired boundary condition
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challenge for these methods is to accurately represent the effect
of immersed boundaries, since the immersed boundary usually
does not coincide with the Cartesian grid points. Among the
Cartesian grid-based methods, the hybrid Cartesian/immersed-
boundary method [9–13] is especially suitable for problems with
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Fig. 1. (a) Computational geometry and (b) mesh layout for the two-roll-mill flow wi
the complex geometry and prescribed moving boundary, since it
does not require additional free parameters and numerical
remesh procedure. In recent years many papers have focused
on the improvement of interpolation schemes for imposing the
boundary conditions on the Cartesian grids. Mohd-Yusof [9]
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applied the direct forcing concept only on the immersed bound-
ary or inside the body, and the interpolation schemes were
implemented in the B-spline direction. Besides Fadlun et al.
Fig. 2. Streamlines (left) and isotherms (right) of a co-rotating two-r
[10] reconstructed the velocity at the first grid point external
to the immersed boundary. Balaras [11] proposed a simple inter-
polation scheme where the interpolation direction was normal to
oll mill on z = 0 plane for: (a) Re = 0.1; (b) Re = 100; (c) Re = 200.



Fig. 3. w-contours (left) and isotherms (right) of a co-rotating two-roll mill on (a) z = 0 and (b) y = 0 planes for Re = 300.
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the immersed boundary, and then Gilmanov et al. [12] further
followed the lead of Balaras’ idea and extended to three-dimen-
sional simulations. We are able to investigate more complex
geometry heat and flow problems by just using the simple Carte-
sian grid. Many fundamental fluid dynamical research problems,
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Fig. 4. (a) Time history of w-velocity and (b) corresponding spectral
such as the 3D two-roll-mill flow, could be further investigated
with more details only using this simple Cartesian grid instead
of involving complicated mesh generation.

The problem of two-roll-mill flow in the Newtonian fluid is a
cylinder that contains two separated inner circular cylinders,
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analysis of a co-rotating two-roll mill at (0,0,0.2) for Re = 400.
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and the flow is generated by the two inner cylinders indepen-
dently rotating in the fixed locations. Similar to the previous
mentioned Taylor–Couette flows, the devices of the two-roll-
mill system have potential to produce hydrodynamic instability
and vertical vortical motion. Few studies are attempted to solve
Fig. 5. w-contours (left) and isotherms (right) of a co-rotating two-roll m
the 3D Navier–Stokes equations of the two-roll-mill flow due to
huge computational cost and numerical limitation. Usually the
numerical simulations are implemented under the idealization
of an infinitely long cylinder by ignoring the end wall effects.
The 2D assumption of the two-roll-mill system is an
ill on z = 0 plane at: (a) t = 610; (b) t = 615; (c) t = 620 for Re = 400.
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approximation to greatly simplify the simulation efforts. In the
authors’ previous study [13], the cross sectional heat and flow
patterns of a two-roll-mill flow are predicted by using the 2D
hybrid Cartesian/immersed-boundary finite-element method.
We have attempted to confine our attention to a range of mod-
Fig. 6. w-contours (left) and isotherms (right) of a co-rotating two-roll m
erate Reynolds numbers for these 2D heat and flow simulations.
However, the validity of the existence of axisymmetric flows for
meeting the requirement of 2D flow assumption needs further
examination when the Reynolds number is increased, and it
motivates us to revisit the problem with a fully 3D model.
ill on y = 0 plane at: (a) t = 610; (b) t = 615; (c) t = 620 for Re = 400.
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The heat transfer of such complex rotating system is also of
great concern in this study, so the two cylinders and the
surface of the cavity are imposed with constant but different
temperatures. The aim of this article is to establish a fully
time-dependent three-dimensional Navier–Stokes model to
investigate the realistic 3D heat and flow behaviors of the
Fig. 7. Streamlines (left) and isotherms (right) of a counter-rotating two
two-roll-mill system. It is expectable that three-dimensional
solutions of the Navier–Stokes equations in flow regimes will
be quite different from two dimensions such as the vortex
stretching phenomenon. Special attention is paid to study the
vertical vortex structure and the hydrodynamic instability in
this 3D model. Meanwhile we will make a detailed comparison
-roll mill on z = 0 plane for: (a) Re = 0.1; (b) Re = 100; (c) Re = 200.
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Fig. 8. (a) Time history of w-velocity and (b) corresponding spectral analysis of a
counter-rotating two-roll mill at (0,0,0.2) for Re = 300.
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between the numerical results of previous 2D and present 3D
flow and heat simulations to further understand the salient
physics of the two-roll-mill problem.
2. Numerical model

2.1. Description of the governing equations and operator-splitting
scheme

The incompressible Navier–Stokes equations and the energy
equation for forced convection are expressed in primitive-variable
form as Eqs. (1)–(3).

r � u ¼ 0 ð1Þ

@u
@t
þ ðu � rÞu ¼ �rpþ 1

Re
r2u ð2Þ

@T
@t
þ ðu � rÞT ¼ 1

RePr
r2T ð3Þ

in which u = (u,v,w), T and p are the dimensionless velocity vector,
temperature and pressure, respectively. The notations of Re and Pr
represent the Reynolds number and Prandtl number. For details of
non-dimensionalized process and characteristic parameters, Young
et al. [13] is referred.

An operator-splitting scheme with the balanced tensor diffusiv-
ity (BTD) [14] term is used to advance the solutions of the 3D
Navier–Stokes equations in temporal discretization. The opera-
tor-splitting scheme calculates the intermediate or provisional
velocities by dropping the pressure term from the momentum
equations. Then the intermediate velocities are corrected by using
the pressure term to satisfy the incompressibility constraint from
the continuity equation. For a fast calculation, we will use an expli-
cit time advancement scheme to solve the advection–diffusion
equation, and then compensate the explicit discretization of the
convective transport by the BTD term. In this study, the opera-
tor-splitting procedure is summarized in the following four steps.

Step 1. Intermediate velocity
u� � un

Dt
¼ �ðun � rÞun þ 1

Re
r2un þ Dt

2
ðun � rÞ½ðun

� rÞun� þ f ð4Þ
Step 2. Pressure calculation
r2pnþ1 ¼ 1
Dt
r � u� ð5Þ
Step 3. Velocity correction
unþ1 ¼ u� � Dtðrpnþ1Þ ð6Þ
Step 4. Temperature calculation
Tnþ1 � Tn

Dt
¼ �ðun � rÞTn þ 1

RePr
r2Tn

þ Dt
2
ðun � rÞ½ðun � rÞTn� þ h ð7Þ
In which u* represents the intermediate velocity vector, f and h are
the forcing terms used to make the u and T at n + 1 time level satisfy
the desired boundary conditions.

2.2. Evaluation of the forcing functions

To satisfy the boundary conditions, the direct forcing concept as
proposed by Mohd-Yusof [9] is added to the governing equations
near or inside the immersed boundary. The direct forcing is a dis-
crete-time forcing which is obtained in the context of the discret-
ized equation. For example, by considering an advection–diffusion
equation, Eq. (7), we can calculate the direct forcing, h, by replacing
the Tnþ1 with the desired boundary temperature Tb and rearrang-
ing the equation as follows.

h ¼ Tb � Tn

Dt
þ ðun � rÞTn � 1

RePr
r2Tn � Dt

2
ðun � rÞ½ðun � rÞTn� ð8Þ

Obviously, the desired temperature is available after adding the
forcing into the advection–diffusion equation. Similarly, the direct
forcing function for the desired boundary velocity ub takes the fol-
lowing equation.

f ¼ ub � un

Dt
þ ðun � rÞun � 1

Re
r2un þrpn � Dt

2
ðun � rÞ½ðun � rÞun�

ð9Þ

The direct forcing is only imposed on the points located near
and inside the immersed boundary; in contrast, both the f and h
terms are set to zero to make the Eqs. (4) and (7) correspond to
the basic operator-splitting scheme for the fluid points outside
the immersed boundary.

2.3. Interpolation for the desired boundary conditions

The direct forcing is introduced to make the specific grid points
to satisfy the given boundary values. However, one important issue
inherent in the use of the immersed boundary techniques is that
the immersed boundary usually does not coincide with the
Cartesian grid. To represent the complex geometry on the Carte-
sian grid, the original boundary conditions over the immersed



Fig. 9. w-contours (left) and isotherms (right) of a counter-rotating two-roll mill on (a) z = 0 and (b) y = 0 planes at t = 300 for Re = 300.
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boundary are transmitted via the interpolation procedure to the
desired values on the Cartesian grid points. The basic concept is
to reconstruct the first point external to the immersed boundary
with the desired boundary velocity and temperature, where the
corresponding desired boundary values are evaluated using inter-
polation along the local normal to the solid boundary. The similar
interpolation technique is also reported by Refs. [11–13]. However,
it is noted that this interpolation technique requires the grids to be
fine enough in the neighbor region of immersed boundary to meet
linear-approximation assumption of velocity and temperature
profiles with proximity to the embedded body. For further
detailed description of the interpolation technique, we refer to
Young et al. [13].
3. Two-roll mill with independently rotating cylinders

We consider a stationary circular cylinder containing two
independently rotating circular cylinders; the cylinder is filled
with a Newtonian fluid of Prandtl number 0.71. In the previous
study [13], we make the usual simplifying assumptions of two
dimensions that the two-roll mill has infinite length in the ver-
tical or axial direction. The end wall effects are totally ignored,
and the flow is without vertical perturbation. With these restric-
tive assumptions, the 2D Navier–Stokes model could be used to
simulate the heat and flow patterns in the cross section of the
two-roll mill. In contrast, present study of the two-roll mill is
of finite height H and the periodic condition is imposed on the
top and end walls. The problem of interest is sketched in
Fig. 1 including the geometric configuration and the computa-
tional-grid system. The outer circular cylinder with a radius
R = 1 centered on the origin, and the two inner cylinders with
radius r = 0.25 have centers lying on the horizontal axis of sym-
metry with a separation of R. The height of two-roll mill is equal
to the diameter of the outer circular cavity as H = 2. The
computational domain is 2R � 2R � 2R in the x, y and z direc-
tions, and a uniform 81 � 81 � 81 grid is used. No-slip boundary
conditions are specified on the fluid–solid interfaces; meanwhile
constant but different temperatures are imposed on the mill
surfaces and two inner cylinders. The temperature is
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Fig. 10. (a) Time history of w-velocity and (b) corresponding spectra analysis of a
counter-rotating two-roll mill at (0,0,0.2) for Re = 400.
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non-dimensionalized by the difference between surface temper-
ature of the outer and inner cylinders. The two parameters, /1

and /2, are defined for the angular velocities of the left and right
inner cylinders, respectively. In this system, the Reynolds num-
ber is defined by the tangent velocity of the rotating cylinder
and the radius of the outer cylinder.

The main concern in this study is the three-dimensional heat
and flow patterns in a two-roll mill system induced by different
rotating speeds of the inner cylinders. We investigate two case
studies which correspond to: (1) co-rotating cylinders; and (2)
counter-rotating cylinders. The simulations are performed
at increasing Reynolds number, Re = {0.1,100,200,300,400},
so that the characteristics of different flow regimes can be
studied.
3.1. Co-rotating cylinders

In the co-rotating case, the cylinders co-rotate with the same
angular speed (/1 = /2 = 4).

(a) Re = 0.1: For the Stokes flow regime, the flow motions are
confined in the azimuthal and radial directions due to the axisym-
metric dynamics and the lack of convective effect. Since the flow
field is invariant along the axial direction for such a low Re,
Fig. 2(a) shows the streamlines and isotherms on z = 0 plane to rep-
resent the heat and flow patterns for any cross section of the 3D
two-roll mill. At Re = 0.1, we have streamline symmetry in x = 0
with v-velocity equal to zero, so the streamline is normal to the
symmetric line. There exists a saddle point lying midway between
the two inner cylinders. Due to the neglect of the fluid inertia, the
streamline and temperature plots in Fig. 2(a) exhibit the symmet-
ric characteristics of flow variables as expected for the Stokes flow.

(b) Re = 100 and 200: The numerical simulations report that the
axial perturbation is still suppressed as the Reynolds number up to
200. Fig. 2(b) and (c) represents the heat and flow patterns of the
cross section on z = 0 plane at Re = 100 and 200 which can be com-
pared with Fig. 2(a) to show the influence of inertial effect. A sad-
dle point lying midway between the two inner cylinders is
preserved with the increasing Reynolds number. The symmetries
associated with the Stokes flow are broken as the inertial effects
start to play a vital role. The streamlines near the cylinders are
approximately the same for the different Reynolds numbers, but
a remarkable change of the shape of streamlines is observed in
the recirculation regions. When Reynolds number keeps increas-
ing, the vortices will grow larger and larger, and the heat and flow
patterns are skewed in the counterclockwise direction.

(c) Re = 300: Further increase of the Reynolds number makes
the flow become unstable due to the axial perturbations. As the
time evolves, vertical motions are initialized and the resulting
3D flow consists of an axial velocity. Fig. 3 depicts the contours
of w-velocity and temperature distributions at the horizontal
plane of z = 0 and the meridian plane of y = 0, respectively. The
cross section contour illustrates that the maximum axial velocity
occurs around the two different cylinders with the opposite direc-
tion. There are five pairs of vortex cells between the two co-rotat-
ing cylinders on the y = 0 plane, and the vortex structure is very
similar to the Taylor vortex of the Taylor–Couette flow. The peaks
of temperature contour occur at the separation points of two dif-
ferent vortex cells, and also arrange in a staggered manner be-
tween the two cylinders.

(d) Re = 400: As the Reynolds number increases to 400, the flow
becomes unsteady and oscillates in a regular manner after transi-
tional region. Fig. 4 records the periodic behavior of the w-velocity
and its corresponding spectral analysis at the probe point (0,0,0.2).
Figs. 5 and 6 illustrate the sequent w-contour and isotherm plots
on the z = 0 and y = 0 planes for the periodic oscillations, respec-
tively. A significance to note is that the peak of temperature distri-
bution also periodically moves along the cylinders.

3.2. Counter-rotating cylinders

In the counter-rotating case, the two inner cylinders are rotat-
ing with equal but opposite angular velocities (/1 = �4, /2 = 4).

(a) Re = 0.1: At the Stokes flow regime, the flow field generated
by counter-rotating cylinders is also invariant along the axial direc-
tion for such a low Re. Fig. 7(a) illustrates the streamline and tem-
perature plots of the counter-rotating two-roll mill on the cross
section z = 0 plane for the Stokes flow regime. Due to the reflec-
tional symmetry of both the geometry and dynamic system at
x = 0, a saddle point is essentially replaced by a streamline of sep-
aration between the two cylinders. The flow patterns are separated
by a vertical portion of streamline, and no fluid can cross from the
left to the right side or vice versa. The streamlines of the main flow
around each cylinder are very circular-like, which are similar in
appearance to a single cylinder configuration. Meanwhile, two
pairs of recirculation eddies appear at the top and bottom, and
these two couple gyres also show the symmetry with respect to
y = 0 plane.

(b) Re = 100 and 200: As the Reynolds number grows to 200, the
flow motion remains confirmed to the 2D flow scenario on the
cross section of the two-roll mill system. The numerical results
of streamline and isotherm plots for the Reynolds numbers of
100 and 200 on z = 0 plane are shown in Fig. 7(b) and (c), respec-
tively. With the increasing Reynolds number, the upper eddies
grow in size and start moving toward main flow; in contrast, the
lower eddies are compressed by the main flow. It should be
emphasized that the flow in these cells is extremely weak (second-
ary flow) in comparison with the neighborhood of cylinders (pri-
mary flow). According to no significant changes appearing in the
isothermal distributions, it is concluded that the heat transfer is
dominated by the diffusion process in the lower recirculation
section.



Fig. 11. w-contours (left) and isotherms (right) of a counter-rotating two-roll mill on (a) z = 0 and (b) y = 0 planes at t = 620 for Re = 400.
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(c) Re = 300: At Re = 300, the flow becomes unstable due to axial
perturbations, and the hydrodynamic instability is triggered by the
growing inertial effect. Fig. 8 records the time history of the
w-velocity at the probe point (0,0,0.2) and the corresponding spec-
tral analysis after the transitional region. Although the velocity
oscillation seems more regular after t = 300, the main-frequency
is not conspicuous and many sub-frequencies are observed. Fig. 9
displays w-contours and isotherms of a counter-rotating two-roll
mill system for Re = 300 on z = 0 and y = 0 planes at t = 300. The
vortex structure is very complicated which also reflects on the
temperature distribution.

(d) Re = 400: As the Reynolds number grows from 300 to 400,
the flow system exhibits the hydrodynamic instability and be-
comes more violent with increasing inertia effect. The evolution
of w-velocity component from t = 0 to t = 800 at the probe point
(0,0,0.2) and the corresponding spectral analysis are described in
Fig. 10. According to the records of velocity oscillation and its spec-
tra, the two-roll-mill flow with counter-rotating cylinder for
Re = 400 could be categorized into the chaotic flow. Fig. 11 displays
w-contours and isotherms of a counter-rotating two-roll mill on
the horizontal plane of z = 0 and the meridian plane of y = 0 for
Re = 400 at t = 620. The heat patterns are very complicated and
strongly varied with time. In the meantime the wave-like iso-
therms seem to travel up and down along the two cylinders.

3.3. Numerical validations

In the above section, the 3D hybrid Cartesian/immersed-bound-
ary method is used to capture the numerous physical phenomena in
a two-roll mill system. The reliability of the developed model is
judged by the reasonable physical characteristics. As mentioned
previously, the main issue of the immersed-boundary method is
that the immersed boundary does not coincide with the Cartesian
grid, so that the given boundary conditions on the immersed
boundary are transmitted to the desired values over the Cartesian
grid with a linear approximation. Once the desired values are ob-
tained, we can reconstruct the velocity and temperature on the first
points external to the immersed boundary. Fig. 12 illustrates a close
look at the streamline and isotherm near the right cylinder of the
co-rotating case at Re = 100. Since the flow is generated by the inner
cylinder and the heat transfer is dominated by the diffusion effect in
this region, it is expectable that the streamline and the isotherm
close to the cylinder should exhibit the shape of the cylinder.
Although only 20 grid points in x and y directions are uniformly



Fig. 12. (a) Streamline and (b) isotherm T = 0.9 around the right cylinder on z = 0
plane for co-rotating case of Re = 100.
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distributed within the inner cylinder diameter, the streamline next
to the cylinder forms a well closed loop and the isotherm, T = 0.9, is
distributed in a very smooth manner without obvious stepwise
geometry. The reasonable predictions in the near-wall zone demon-
strate the capability of the adopted interpolation scheme for repre-
senting the effects of embedded body on the Cartesian grid.

To analyze the accuracy of overall numerical procedure, the
simulations of the co-rotating case at Re = 100 are revisited using
three different grids ranging from 61 � 61 � 81, 81 � 81 � 81 up
to 101 � 101 � 81 uniformly in the x, y and z directions, respec-
tively. The results of grid-independence study are demonstrated
in Fig. 13, judging from the fact that different grid levels make
no significant change in the computed velocity and temperature
profiles along x = 0 and z = 0. In authors’ previous study [13], the
2D hybrid Cartesian/immersed-boundary finite-element model is
developed to simulate the two-roll-mill flow with the axisymmet-
ric assumption, and the results are also illustrated in Fig. 13 or co-
rotating case of Re = 100. The mesh-independent solutions for the
present 3D model are almost indistinguishable in comparison with
the previous 2D results. Before the flow becomes unstable due to
axial perturbations, the present 3D model has capacity to render
the 2D result for the simple flow flied without the provision of axi-
symmetric assumption.
4. Conclusions

The two-roll-mill flow is of fluid dynamic importance and also
has many practical applications. A hybrid Cartesian/immersed-
boundary finite-element model has been developed to allow us
to simulate fully 3D unsteady, viscous incompressible flows and
heat transfers within the two-roll-mill system generated by the
two inner rotating cylinders. The framework of the developed
model contains: (1) the Gelerkin finite-element procedure in
which structured prism element is utilized to discrete the compu-
tation domain; (2) the operator-splitting scheme with the BTD
term is used to advance the solution in time; (3) the hybrid Carte-
sian/immersed-boundary method is employed to deal with com-
plex geometry over a Cartesian grid. The physical characters,
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streamline topologies and temperature contours are discussed for
a range of the rotating velocities and Reynolds numbers. The flow
regimes are characterized by 3D features of the non-axisymmetry,
the vertical vortex structure and the hydrodynamic instability.
Based on the numerical results, several conclusions are drawn as
follows:

1. For the counter-rotating case, the fluid motion between the cyl-
inders is reinforced in a uniform direction, and results in a
stronger velocity in comparison with the co-rotating case which
the driven forces are counteracted in this region. As a result, the
flow field of the counter-rotating case is therefore more violent
and the unstable behavior is expected to occur here for lower
rates of rotation. In our numerical experiment, the two-roll-mill
flows are confirmed to 2D motion as the Reynolds numbers
equal to 0.1, 100 and 200 for both the co- and counter-rotating
cases. However, for the co-rotating case, the flow breaks the
axisymmetry and is finally replaced by the cellular pattern on
the axial plane at Re = 300; as the Reynolds number further
increases to 400, the flow will oscillate with a single frequency.
As for counter-rotating, the time history of w-velocity and its
power spectra show the chaotic flow regime for the Reynolds
number larger than 300. This event reveals that the counter-
rotating is more powerful for creating chaotic advection than
the co-rotating in the two-roll-mill system.

2. The assumption of axisymmetry in the two-roll-mill system is
usually regarded as an approximate approach to simplify the
numerical simulation and to reduce the computational cost
since a 2D model can be made. However, a model with axisym-
metric assumption is very restrictive to describe the realistic
flow behaviors. The present 3D results of computed velocity
and temperature profiles along x = 0 and z = 0 for Re = 100 are
compared well with the previous 2D simulation. The results
demonstrate that when the axisymmetric characteristics should
be maintained, the 3D numerical result will automatically ren-
der the subset of the axisymmetric flow patterns. However, as
the Reynolds number exceeds a critical value, the non-axisym-
metric nature will prohibit the usage of the axisymmetric
assumption and require a 3D model. The developed fully
three-dimensional model has demonstrated a considerable
capacity to capture the realistic physical phenomena, even for
the chaotic flow regime.

3. In view of the heat and mass transfer, the unsteady and oscillat-
ing flow phenomenon is a very efficient way to amplify the heat
transfer augmentation. Among the unsteady and oscillating
flow systems, the chaotic flows have distinct advantages over
the non-chaotic flows. Up to the Re = 200, the two-roll-mill
flows are steady and confirmed to 2D motion, so the axial trans-
fer is limited by a simple diffusion. For the co-rotating case at
Re = 300, the cellular pattern appears and the peaks of temper-
ature contour occur at the separation points of two different
vortex cells on the axial plane. The vortex cells are still ineffi-
cient mixers, because each vortex remains disconnected from
its neighbors. As flows grow into unsteady and oscillating
regimes, it is observed that the peaks of isotherm are similar
to the traveling wave which propagates along the cylinders up
and down. When the flow velocity oscillates in a simple peri-
odic manner, the wave will also propagate with a single fre-
quency. As the flow becomes chaotic motion, the temperature
will change rapidly with time, such that the fluid mixing is
enhanced considerably.
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